
Appendix A
In this appendix we expand on the description of the FRESCO algorithm and some of its
speedups. We adopt the recend, recbegin, diagend and diagbegin definitions developed
in section 3, as well as the {A, B, C, D} and matrix M notations.

A.1 First Values
Initially, we assign a value of 0 to M[0,0], as well as all squares within the first row or
column. In this way, when considering a square whose A point is M[0, 0] itself, the score
up to this square will be automatically 0, with no additional processing necessary in the
recursion.

A.2 Note about Recursion Implementation
The recursion procedure is computed for every cell C in M[0,0] and is implemented via
three nested loops, iterating over all possibilities (in order, from innermost to outermost
loop) of recend (D), diagstart (B) and recstart (A) points. This order allows us to
implement the speedups in the manner described.

A.3 SMAWK / Ranges speedup
In section 3.2 we describe a speedup in the context of the SMAWK algorithm. We have
implemented this feature using a ‘ranges’ construct, whereby instead of iterating for all
points D for each {A, B, C} set, we create ranges of points D for which the same optimal
{A, B} choice exists. To accomplish this, we first note that if for two nonconsecutive
points D1 and D2, we find the same optimal {A, B} pair (remembering that C is fixed)
(i.e. the same recstart and diagstart maximize the path though {C, D1} and {C, D2}), and
if the scoring scheme does not change concavity, then all points between D1 and D2 are
maximized by that same {A, B}.
 To see why this is true, we consider the contradicting case where a point D’
between D1 and D2 could be optimized by a different {A, B} pair, say {A’, B’}. We let
f(x) be our scoring scheme, for the fixed {A, B, C}, with x indicating the change in size
of rectangle as we vary D. Let g(x) be similarly defined for {A’, B’, C}, and note that g is
simply f shifted in the x - y plane (i.e. g = f(a + x) + b). Further, observe that we need
f(D1) > g(D1), since otherwise {A’, B’} would optimize D1. Similarly, f(D2) > g(D2) and
f(D’) < g(D’). Thus, we need g and f to meet at least twice. But by the proof below, this
would imply that f changes concavity at some point (*). Hence, assuming the scoring
scheme does not change concavity in the size of the rectangle, we conclude that if {A, B}
maximizes the alignment score through D1 and D2, all points between D1 and D2 are
maximized by {A, B} as well. Note: If f(D1) = g(D1) and f(D2) = g(D2) then either f(x) =
g(x) for all x, or we can move along D until this is not true. This case is rare in practice.

Since, given same concavity, all points between D1 and D2 are maximized by the same
{A, B}, we implement the ranges speedup via binary search on the set of points D
possible for the given point C.

Proof of (*):
Note: Rolle’s Theorem (R): 0)('|),(0)(0)(|, =∈∃⇒=∧=∃ cfbacbfafba

Definitions: We let our scoring function be)(xf , Then by the above introduction,

)(')(')()(αβα +=⇒++= xfxgxfxg , α , β nonzero.
Also, let)()()(xgxfxh −= .

Now assume the functions intersect in two points. I.e.

)(')('
)(')('

)(0)('|
0)(0)(

)()()()(|,

α+=⇒
=⇒

=∃⇒
=∧=⇒

=∧=∃

cfcf
cgcf

Rchc
bhah

bgbfagafba

For simplicity, let α+= cd ,)(')(' αξ +== cfcf and ξ−=)(')(xfxj

We have

0)(''
)(0)('|

0)(&0)(

=⇒
=∃⇒
==

ε
εε

f
Rj

djcj

Hence there exists a point of inflection at ε

Hence 0)(''|)()()()(|, =∃⇒=∧=∃ cfcbgbfagafba
i.e. If the function intersects in at least two points, ∃ x | f has an inflection point.
⇔ If concavity same ∀ x => function does not intersect at more than 1 point, which
is what we set out to prove.

(This requires well-behaved functions at ε (no cusps, etc))

Appendix B
In this appendix we detail the gap frequencies analysis. The alignment accuracy is
calculated via the procedure introduced by Pollard et al, 2004. Please refer to that paper
for the details.

The gap accuracy is calculated using the following the formula:

||11 0 2

n

at

m

n

at∑ +

−

−

Where t is the number of gaps in the evolved (‘true’) alignment, a represents the number
of gaps in the generated alignment, n is the number of alignments and m is a
normalization factor. The normalization and inversion (via subtraction from one) are
computed for easy visualization of the resulting gap frequencies.

