VARiD: Variation Detection in Color-Space and Letter-Space

Adrian Dalca¹ and Michael Brudno^{1,2} University of Toronto

Department of Computer Science
 Banting & Best Department of Medical Research

Motivation

we have different Color-space and Letter-space platforms neec Motivation oth)

Methods

Results

Advantages

combining the different Color-space and Letter-space platforms

Sequencing Platforms

• letter-space Sanger, 454, Illumina, etc

> NC_005109.2 | BRCA1 SX3 TCAGCATCGGCATCGACTGCACAGG

• color-space AB SOLiD not as many software tools out there

> NC_005109.2 | BRCA1 AF3
T212313230313232121311120

• different sequencing biases, different inherent errors and different advantages

• useful to combine this information

combining the different Color-space and Letter-space platforms

Color Space

	А	С	G	Т
А	0	1	2	3
С	1	0	3	2
G	2	3	0	1
Т	3	2	1	0

pic reference: SHRiMP

combining the different Color-space and Letter-space platforms

Color Space

Translating

T212313230313232121311120 TCAGCATCGGCATCGACTGCACAGG

Sequencing Error vs SNP

> T212313230313232121311120
> T212313230310232121311120
> TCAGCATCGGCAGCGACTGCACAGG
> T212313230312332121311120

> T212313230310232121311120
> TCAGCATCGGCAAGCTGACGTGTCC

combining the different Color-space and Letter-space platforms

VARiD toolbox GUI

combining the different Color-space and Letter-space platforms

combining the different Color-space and Letter-space platforms

Motivation

• we want a SNP caller to handle both traditional letter-space as well as color-space reads

Realistically, situation is tougher.

- Heterozygous SNPs
- Homologous SNPs
- Tri-allelic SNPs
- small indels
- alot more error than in original previous example
- misalignment (by chance)
- misalignment (consistently)

Motivation

Methods

Model the system with an HMM Expand the HMM and apply Heuristics

Results

Advantages

Quick breath.

HMM models and heuristics

Hidden Markov Model

Statistical model for a system (so we have states) Assume that system is a Markov process with state unobserved. Markov Process: future state depends only on current state We can observe the state's emission (output) each state has a probability distribution over outputs

> apply: we don't know the state (donor?), but we can observe some output determined by the state (reads?)

HMM models and heuristics

Our Hidden Markov Model

• have some color-space and/or letter-space reads

Note: AA and TT give the same colors! So we have redundancy.

HMM models and heuristics

Colors and Letters

AA and TT give the same colors! So we have redundancy.

• can't just call colors, since they can represent one of several translations

• to properly call SNPs, we need to model underlying letters.

HMM models and heuristics

States of the Model

Consider donor at positions 532, 533 and 534. At each pair we have one color, two letters

16 states

only certain transitions allowed

each state depends on the previous states, but not further (Markov Process)

HMM models and heuristics

Emissions

HMM models and heuristics

Our Hidden Markov Model

Emissions

HMM models and heuristics

Emissions Probability

How do we use emissions? Assign an Emission Probability to each state: What is the probability that this state emitted these reads.

T0102010<u>0</u>311223 T103010<u>1</u>311223 T2010<u>0</u>311223

E.g. For state CC:

ATTGCGC**AA**TGCG TTGGGC**AA**TGCGA GCGC**AC**TGCGAC

$$p_E = \left[(1 - \frac{\varepsilon}{3})^2 \times \varepsilon^1 \right] \times \left[(1 - \frac{\xi}{4})^1 \times \xi^2 \right]$$

HMM models and heuristics

Our Hidden Markov Model

So we have

- the unknown (donor pair at some location),
- the emissions (output the read colors at some location), and
- the dependency on the previous state.

HMM models and heuristics

Our Hidden Markov Model

- Have set-up a form of an HMM
- run Forward-Backward algorithm
- get probability distribution over states

HMM models and heuristics

Current form of HMM only detects homozygous SNPs

We include :

Expansion and Heuristics

• heterozygous SNPs

• short indels

HMM models and heuristics

Expansion: Gaps and heterozygous SNPs

Same algorithm, but in all we have 1600 states

HMM models and heuristics

Expansion: Gaps and heterozygous SNPs

- Use variable error rates for emissions o can support quality values (alter the emission probabilities)
- Translate through the first letter
 - o gives guidance in letter-space
 - know the error rate (= error rate at first color) note: not ok to translate the whole read due to effects of color-space error, but one letter is safe. handle like a normal letter-space emission

>**T2**12313230312332121311120 >><u>C</u>12313230312332121311120

HMM models and heuristics

Post Processing: Uncorrelated Errors

HMM doesn't know which read each emission came from.

Post Processing: For each proposed variant, check that there actually is enough reads supporting this variant. Several other cases are handled with a similar check.

Quicker breath.

simulations and real data

Working Results

Simulations

Color-space dataset

- Source: JCVI. Validated with Sanger. Mappings are done with SHRiMP
- 8 datasets all with similar performance:
 - 83-87% True Positives (real SNPs called)
 - few False Positives (non-var called as SNPS) --- 10-15% of calls, 0.02% of nucleotides
 - results very similar to Corona;

Examples (~25000 bp)

	NA19137		NA18504	
	TP	FP	TP	FP
VARiD	38/44	10	54/65	7
Corona	39/44	10	55/65	10

simulations and real data

Methods

Results

Advantages take advantage of both Color-space and Letter-space reads Adjacent SNPs, short indels

Quicker breath.

combining both platforms natively

Summary of VARiD

- Treats color-space and letter-space together in the same framework
 - no translation take advantage of each technology's properties
 - fully probabilistic
- Handles adjacent SNPs

```
ExamplereferenceCAAG translates todonorCTTG translates toC201Looks like 2 sequencing errors.<br/>VARiD can detect the 2 SNPs
```


Find us @ the poster session: U61. Monday (June 29) evening

VARiD website http://compbio.cs.utoronto.ca/varid

Thank you: Sam Levy at JCVI NSERC

Contact: dalca@cs.utoronto.ca

