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Motivation
we have different Color-space and Letter-space platforms

need to bring them together (while taking advantage of both)

Methods

Advantages

Results

Motivation
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combining the different Color-space and Letter-space platforms

Sequencing Platforms
• letter-space

Sanger, 454, Illumina, etc

> NC_005109.2 | BRCA1 SX3
TCAGCATCGGCATCGACTGCACAGG

• color-space
AB SOLiD
not as many software tools out there

> NC_005109.2 | BRCA1 AF3
T212313230313232121311120

• different sequencing biases, different 
inherent errors and different advantages

• useful to combine this information
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Color Space

pic reference: SHRiMP
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Color Space

Translating
T212313230313232121311120
T

Sequencing Error vs SNP

> T212313230313232121311120
> T212313230310232121311120

> TCAGCATCGGCAGCGACTGCACAGG
> T212313230312332121311120

> T212313230310232121311120
> TCAGCATCGGCAAGCTGACGTGTCC

A G

C T

CAGCATCGGCATCGACTGCACAGG
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Notes:
• clear distinction between a sequencing error and a SNP
• can this help us in SNP detection? sounds like it! 

single color change  error, 
2 colors changed  (likely) SNP.

reference

VARiD toolbox GUI

Example

reads
Sequencing Errors SNP

TTTTTGAGAGGAATA TTTTTGAGAGGAATA
A
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reference

reads

Examples (more realistically)

guess: Het SNP
e.g. above

real data

A C T
A G T?

heterozygous  SNPs a lot more errors
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Realistically, situation is tougher.
• Heterozygous SNPs
• Homologous SNPs
• Tri-allelic SNPs
• small indels
• alot more error than in original previous example
• misalignment (by chance)
• misalignment (consistently)

Motivation 
• we want a SNP caller  to handle both traditional 
letter-space as well as color-space reads
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MethodsMethods
Model the system with an HMM

Expand the HMM and apply Heuristics

Motivation

Advantages

Results

Quick breath.
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HMM models and heuristics

Hidden Markov Model

Statistical model for a system (so we have states)
Assume that system is a Markov process with state unobserved. 

Markov Process: future state depends only on current state
We can observe the state’s emission (output)

each state has a probability distribution over outputs

apply: we don’t know the state (donor?), 
but we can observe some output 
determined by the state (reads?)



Our Hidden Markov Model

At every pair of consecutive positions:
• don’t know the donor nucleotides, 
• have some color-space and/or letter-space reads

The donor could be:
• letters: AA color 0
• letters: AC color 1

:
• letters: TT color 0
16 combinations

(for colors)
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Note: AA and TT give the same colors! So we have redundancy.
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AA and TT give the same colors! 
So we have redundancy.

letters: AA color 0

letters: TT color 0

• can’t just call colors, since they can 
represent one of several translations

• to properly call SNPs, we need to model 
underlying letters.

Colors and Letters
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States of the Model

Consider donor at positions 532, 533 
and 534. 
At each pair we have  one color,  two
letters

AA

CA

AT

TT

532/3

:

533/4

:

GA

CT

:
:

AA

TT

.

.

.

.

.

.

.

.

.

16 states

only certain transitions allowed

each state depends on the 
previous states, but not further 
(Markov Process)

position

… X Y Z …
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…NNNNNNNNNNNNNN…

T01020100311223
T1030101311223
T20100311223

Emissions

ATTGCGCAATGCG
TTGGGCAATGCGA
GCGCACTGCGAC

Unknown genome

Color reads

Letter reads

color emissions

letter emissions
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Our Hidden Markov Model
Emissions

AA
color 0

color 1

color 2

color 3

letters  A

letters  C

Same distribution of emissions in 
color-space

1 – ε/3

ε

ε

ε

emission probability

letters  T ξ

(1- ξ/3 )

different emissions in letter-space 

TT

letters  G ξ

ξ

motivation | methods | results | advantages 

HMM models and heuristics



…NNNNNNNNNNNNNN…

T01020100311223
T1030101311223
T20100311223

Emissions Probability

ATTGCGCAATGCG
TTGGGCAATGCGA
GCGCACTGCGAC

])
4

1[(])
3

1[( 2112 ξξεε
×−××−=Ep

E.g. For state CC:

How do we use emissions? 
Assign an Emission Probability to each state: 
What is the probability that this state emitted these reads. 
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So we have 
• the unknown (donor pair at some location), 
• the emissions (output – the read colors at some 
location), and 
• the dependency on the previous state.

Our Hidden Markov Model
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Our Hidden Markov Model

• Have set-up a form of an HMM
• run Forward-Backward algorithm 
• get probability distribution over states

AA

CA

AT

TT

:

:

GA

CT

:
:

likely state
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Current form of HMM only detects homozygous SNPs

We include : 
• short indels
• heterozygous SNPs

Expansion and Heuristics
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Expansion: Gaps and heterozygous SNPs

Expand states
• Have states that include gaps

• emit: gap or color

A-
--

-G

AG
TG

T-
T-

• Have larger states, for diploids
• emit: colors

Same algorithm, but in all we have 1600 states
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Expansion: Gaps and heterozygous SNPs

• Use variable error rates for emissions
o can support quality values (alter the emission probabilities)

• Translate through the first letter
o gives guidance in letter-space
o know the error rate  (= error rate at first color)

note: not ok to translate the whole read due to
effects of color-space error, but one letter is safe.
handle like a normal letter-space emission

>T212313230312332121311120
>>C12313230312332121311120
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Post Processing: Uncorrelated Errors

HMM doesn’t know which read each emission came from. 

We will get a lot of confidence in states voting for
which is a het SNP

But there are NO reads supporting Blue-Green

Example

Post Processing: For each proposed variant, check that there actually is 
enough reads supporting this variant. Several other cases are handled with a 
similar check.

4 4

2 2
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ResultsResults

Motivation

Methods

Advantages

Quicker breath.



Working Results

Simulations

Color-space dataset
• Source: JCVI. Validated with Sanger. Mappings are done with SHRiMP
• 8 datasets all with similar performance: 

• 83-87% True Positives (real SNPs called) 
• few False Positives (non-var called as SNPS)  --- 10-15% of calls, 0.02% of nucleotides
• results very similar to Corona; 

Examples  (~25000 bp)
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simulations and real data

NA19137 NA18504

TP FP TP FP

VARiD 38/44 10 54/65 7

Corona 39/44 10 55/65 10
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simulations and real data

Example of False Positive

Sanger (“real”) 
haplomes

Color-space 
Reads

VARiD Het SNP 
Prediction

A C T

A C T

A C T
A G T

Example of False Negative (missed call)

Sanger (“real”) 
haplomes

Color-space 
Reads

VARiD
Prediction

C C T

C T T

C C T
C C T

A T G

A C G

A T G
A T G



Advantages
Advantages

take advantage of both Color-space and Letter-space reads
Adjacent SNPs, short indels

Motivation

Methods

Results

Quicker breath.
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combining both platforms natively

Summary of VARiD

• Treats color-space and letter-space together in the same framework
• no translation – take advantage of each technology’s properties
• fully probabilistic

• Handles adjacent SNPs

CAAG translates to C102

CTTG translates to C201

Example

Looks like 2 sequencing errors.
VARiD can detect the 2 SNPs

donor 

reference 



Find us @ the poster session: U61. 
Monday (June 29) evening

VARiD website
http://compbio.cs.utoronto.ca/varid

Thank you:
Sam Levy at JCVI
NSERC

Contact:
dalca@cs.utoronto.ca
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