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Variation detection from NGS reads

Reference: TCAGCATCGGCATCGACTGCACAGGACCAGTCGATCGAC

Donor:     ???????????????????????????????????????
GCATCGACTGCA

CGGGATCGACTG
Aligned reads:        ATCCATTGCA

GATCCACTGCAC

• Determine differences (variation) between reference and donor
using NGS reads of the donor



Motivation
Color-space and Letter-space platforms

bring them together

Methods

Summary

Results
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Sequencing Platforms

• letter-space
Sanger, 454, Illumina, etc

> NC_005109.2 | BRCA1 SX3
TCAGCATCGGCATCGACTGCACAGG

• color-space
AB SOLiD
less software tools available 

> NC_005109.2 | BRCA1 AF3
T212313230313232121311120

• many differences -> useful to combine this information
• sequencing biases
• inherent errors 
• advantages
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Color Space
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Translation Matrix Translation Automata
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> T212313230313232121311120



Translating
> T212313230313232121311120
> T

Sequencing Error vs SNP

Sequencing Error
> T212313230313232121311120
> T212313230310232121311120
> TCAGCATCGGCAAGCTGACGTGTCC

SNP
> TCAGCATCGGCATCGACTGCACAGG
> TCAGCATCGGCAGCGACTGCACAGG
> T212313230312332121311120

A G

C T

CAGCATCGGCATCGACTGCACAGG

Color Space
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Color Space
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• clear distinction between a sequencing error and a SNP
• can this help us in SNP detection? sounds like it! 

single color change  error, 
2 colors changed  (likely) SNP.

Easy snp call Well covered bases Difficult Case
reference in
color-space

reads

position 



Detection
• Heterozygous SNPs
• Homozygous SNPs
• Tri-allelic SNPs
• small indels
• account for various errors, quality values & misalignments

Motivation 
• variation caller  to handle both letter-space & color-space reads

Motivation
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VARiD
• system to make inferences on the donor bases 

• variation detection



Methods

Simple HMM Model
states, emissions, transitions, FB

Extended HMM Model
gaps, diploids, exceptions

Motivation

Summary

Results
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Statistical model for a system - states

Assume that system is a Markov process with state unobserved. 
Markov Process: next state depends only on current state

We can observe the state’s emission (output)
each state has a probability distribution over outputs

Hidden Markov Model (HMM)
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Hidden Markov Model (HMM)
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Apply HMM to variation detection: 
• we don’t know the state (donor), but 
• we can observe some output determined 
by the state (aligned reads)



Hidden Markov Model (HMM)
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Why pairs of letters? Handle colors.
• AA and TT gives the same colors. Can’t just model colors

The donor could be:
• letters: AA color 0
• letters: AC color 1

:
• letters: TT color 0
16 combinations
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Transitions
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Transitions
• only certain transitions allowed
• when allowed, p(Xt|Xt-1) = freq(Xt)
• each state depends only on the 
previous states (Markov Process)

States
• 16 possible states
• only look at second letter



T01020100311223
T1030101311223

T20100311223

ATTGCGCAATGCG
TTGGGCAATGCGA

GCGCACTGCGAC

Unknown 
genome

Color 
reads

Letter 
reads

Emissions
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Emission Probabilities
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Same color emission 
distribution

TT

Different letter emission 
distribution

TT
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E.g. For state CC:

Combining emission probabilities
• probability that this state emitted these reads.
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Emission Probabilities
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Summary

• unknown state 
• donor pair at location

• transitions
• transition probabilities  

• emissions
• reads at location
• emission probabilities
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Simple HMM
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• Have set-up a form of an HMM
• run Forward-Backward algorithm 
• get probability distribution over states at each position

AA

CA

AT

TT

:

:

GA

CT

:
:

likely state
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Forward-Backward Algorithm
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• Variation Detection:
compare most likely state with reference:

ref:  GCTATCCA
don:  ...AT...

probability



Methods

Simple HMM Model
states, emissions, transitions, FB

Extended HMM Model
gaps, diploids, exceptions

Motivation

Summary

Results
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Simple HMM 
• only detects homozygous SNPs

Extended HMM:
• short indels
• heterozygous SNPs
• complex error profiles & quality values

motivation | methods | results | summary

Extended HMM
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Expand states
• Have states that include gaps

• emit: gap or color

A-
--

-G

AG
TG

T-
T-

• Have larger states, for diploids

• Transitions built in similar fashion as before
• Same algorithm, but in all we have 1600 states with very sparse transitions

Expansion: Gaps and heterozygous SNPs
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• Emission probabilities 
o Support quality values 
o Use variable error rates for emissions

• Translate through the first color
o first color is incorrect
o letter-space signal

Donor: ACAGCATCGGCATCGACTGC
1123132303123321213

read: >T2123132303123321213
> C123132303123321213

Expansion

motivation | methods | results | summary 23

• Post-process putative SNPs
o correlated adjacent errors may support het SNPs
o check putative SNPs
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blue: varid steps

Summary



Results

Motivation

Methods

Summary
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Results
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• Human dataset from Harismendy et al, 2009. (NA17156,17275,17460,17773)
454, SOLiD, Sanger

Color-space dataset:
• Compare random subsets: 

• Corona (with AB mapper) 
• VARiD (with SHRiMP) 
• VARiD (with AB mapper)

Conclusions:
• the three pipelines perform 
very similarly. 
• High-coverage results is as good 
as can be achieved 
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Results
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Letter-space dataset:
• Compare random subsets  : 

• GigaBayes (with Mosaik) 
• VARiD (with SHRiMP) 
• VARiD (with Mosaik)

Conclusion:
•the three pipelines  perform 
very similarly.
• High-coverage results is as good 
as can be achieved  
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letter-space

F-meas. 0x 1x 2.5x 5x 10x

Co
lo

r-
sp

ac
e

0x 0.0 19.4 43.5 59.1 71.7

10x 47.8 51.8 59.4 69.5 76.5

20x 60.6 58.9 65.3 73.4 80.3

50x 73.1 69.8 73.6 80.0 83.5

100x 75.6 75.2 77.9 82.7 86.0

Results

VARiD Motivation:
Combining Letter-space and Color-space data to achieve increased accuracy 
in at-cost comparison
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Assuming a same-cost 
comparison of:

• 10x letter-space (LS)

• 100x color-space (CS)

• 5x LS and 50x CS

VARiD



Summary

Motivation

Methods
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Summary of VARiD

• HMM modeling underlying donor

• Treats color-space and letter-space together in the same framework

• no translation – take advantage of each technology’s properties

• accurately calls SNPs, short indels in both color- and letter-space

• improved results  with hybrid data.

Summary 
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• Website: http://compbio.cs.utoronto.ca/varid 
(VARiD freely available)

• Contact: varid@cs.utoronto.ca
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